8160 Embedding Enumeration

As you probably know, a *tree* is a graph consisting of n nodes and n-1 undirected edges in which any two nodes are connected by exactly one path. In a *labeled tree* each node is labeled with a different integer between 1 and n. In general, it may be hard to visualize trees nicely, but some trees can be neatly embedded in rectangular grids.

Given a labeled tree G with n nodes, a 2 by n embedding of G is a mapping of nodes of G to the cells of a rectangular grid consisting of 2 rows and n columns such that:

- Node 1 is mapped to the cell in the upper-left corner.
- Nodes connected with an edge are mapped to neighboring grid cells (up, down, left or right).
- No two nodes are mapped to the same cell.

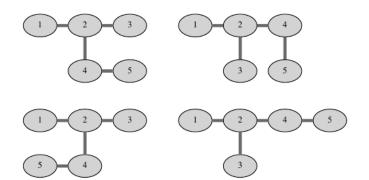
Find the number of 2 by n embeddings of a given tree, modulo $10^9 + 7$.

Input

The input file contains several test cases, each of them as described below.

The first line contains an integer n $(1 \le n \le 300000)$ — the number of nodes in G. The j-th of the following n-1 lines contains two different integers a j a_j and b_j $(1 \le a_j, b_j \le n)$ — the endpoints of the j-th edge.

Output


For each test case, output the number of 2 by n embeddings of the given tree, $mod 10^9 + 7$.

Note: All 4 embeddings of the tree in the example input are given in the figure below.

Sample Input

Sample Output

4

