# 👳 👸 🙀 ACM-ICPC Live Archive

# 7786 A Rational Sequence (Take 3)

An infinite full binary tree labeled by positive rational numbers is defined by:

- The label of the root is 1/1.
- The left child of label p/q is p/(p+q).
- The right child of label p/q is (p+q)/q.

The top of the tree is shown in the following figure:



A rational sequence is defined by doing a level order (breadth first) traversal of the tree (indicated by the light dashed line). So that:

$$F(1) = 1/1, F(2) = 1/2, F(3) = 2/1, F(4) = 1/3, F(5) = 3/2, F(6) = 2/3, \dots$$

Write a program to compute the *n*-th element of the sequence, F(n). Does this problem sound familiar? Well it should! We had variations of this problem at the 2014 and 2015 Greater NY Regionals.

#### Input

The first line of input contains a single integer P,  $(1 \le P \le 1000)$ , which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input. It contains the data set number, K, and the index, N, of the sequence element to compute  $(1 \le N \le 2147483647)$ .

#### Output

For each data set there is a single line of output. It contains the data set number, K, followed by a single space which is then followed by the numerator of the fraction, followed immediately by a forward slash ('/') followed immediately by the denominator of the fraction. Inputs will be chosen so neither the numerator nor the denominator will overflow an 32-bit **unsigned** integer.

## Sample Input

- 4
- 1 1
- 24
- 3 11
- 4 1431655765

### Sample Output

- 1 1/1
- 2 1/3
- 3 5/2
- 4 2178309/1346269