The Bird tree (Hinze, R. (2009). The Bird tree. *J. Funct. Program.*, 19: 491-508.) is an infinite binary tree, whose first 5 levels look as follows:

It can be defined as follows:

\[
\text{bird} = \frac{1}{1/(\text{bird} + 1) + (1/\text{bird}) + 1}
\]

This is a co-recursive definition in which both occurrences of bird refer to the full (infinite) tree. The expression \(\text{bird} + 1\) means that 1 is added to every fraction in the tree, and \(1/\text{bird}\) means that every fraction in the tree is inverted (so \(a/b\) becomes \(b/a\)).

Surprisingly, the tree contains every positive rational number exactly once, so every reduced fraction is at a unique place in the tree. Hence, we can also describe a rational number by giving directions (L for left subtree, R for right subtree) in the Bird tree. For example, \(2/5\) is represented by LRR. Given a reduced fraction, return a string consisting of L's and R's: the directions to locate this fraction from the top of the tree.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test case:

- one line with two integers \(a\) and \(b\) (\(1 \leq a, b \leq 10^9\)), separated by a '/'. These represent the numerator and denominator of a reduced fraction. The integers \(a\) and \(b\) are not both equal to 1, and they satisfy \(\gcd(a, b) = 1\).

For every test case the length of the string with directions will be at most 10 000.

Output

Per test case:

- one line with the string representation of the location of this fraction in the Bird tree.

Sample Input

3
1/2
2/5
7/3

Sample Output

L
LRR
RLLR