A company decides to simulate on computer the process of manufacturing its own goods. In order to do that, it makes the following observations:

1. The whole process can be split into several steps, between them there are some dependencies. This can be represented by a diagram (graph), which we suppose to be only one for all goods produced by company as in figure 1;

2. First step designates the start of manufacturing process; there is only one first step, denoted by the number 1;

3. There are not steps isolated or outside the process (every step is linked by a path with the first step);

4. Some steps are total dependants; so, we claim that the step \(i \) is total dependant of step \(j \) if every path in the fabrication process cannot arrive to \(i \) without passing through \(j \).

So, all steps are total dependants of step 1.

Example: In the process shown by the figure 1 the step 4 is total dependant of step 3, steps 5, 6 and 7 are total dependants of 4 (hearse of 3), but step 3 is not total dependant of step 2.

The Computing Center Dept. of company notes that whole manufacturing process is easier to be controlled if it would be structured by a tree, as follows:

- All steps of manufacturing process are nodes of the tree;
- Each node ensures total dependence of all its own descendants;

The tree associated to the diagram from figure 1 is shown in figure 2.

Your task is to write a program that builds this dependence tree.

Input
The input file contains several input data sets. An input data set has the following format:

\[n \]
\[a_{11} \, a_{12} \, \ldots \, a_{1n} \]
\[a_{21} \, a_{22} \, \ldots \, a_{2n} \]
\[\ldots \]
\[a_{n1} \, a_{n2} \, \ldots \, a_{nn} \]

where \(a_{ij} = 1 \) if step \(j \) follows directly step \(i \) in the process diagram, otherwise \(a_{ij} = 0 \).

Output
At output, the program must write \(n - 1 \) lines for every input data set; each line has the format:

\[i \, j \]

with the meaning that node \(j \) is a direct descendant of node \(i \) in the tree. The pair \((i, j)\) follows \((i', j')\) if and only if \(i' < i \) or (\(i'_1 = i_1 \) and \(j'_1 < j_1 \)).

Sample Input

\[10 \]
\[0 \, 1 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \]
\[0 \, 0 \, 1 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \]
\[0 \, 0 \, 0 \, 1 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \]
\[0 \, 0 \, 0 \, 0 \, 1 \, 0 \, 0 \, 0 \, 0 \, 0 \]
\[0 \, 0 \, 0 \, 0 \, 0 \, 1 \, 0 \, 0 \, 0 \, 0 \]
\[0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 1 \, 0 \, 0 \, 0 \]
\[0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 1 \, 0 \, 0 \]
\[0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 1 \, 0 \]
\[0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 1 \]

Sample Output

\[1 \, 2 \]
\[1 \, 3 \]
\[3 \, 4 \]
\[3 \, 5 \]
\[4 \, 6 \]
\[4 \, 7 \]
\[7 \, 8 \]
\[8 \, 9 \]
\[8 \, 10 \]